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Short-term forms of presynaptic plasticity
Diasynou Fioravante and Wade G Regehr
Synapses exhibit several forms of short-term plasticity that play

a multitude of computational roles. Short-term depression

suppresses neurotransmitter release for hundreds of

milliseconds to tens of seconds; facilitation and post-tetanic

potentiation lead to synaptic enhancement lasting hundreds of

milliseconds to minutes. Recent advances have provided

insight into the mechanisms underlying these forms of

plasticity. Vesicle depletion, as well as inactivation of both

release sites and calcium channels, contribute to synaptic

depression. Mechanisms of short-term enhancement include

calcium channel facilitation, local depletion of calcium buffers,

increases in the probability of release downstream of calcium

influx, altered vesicle pool properties, and increases in quantal

size. Moreover, there is a growing appreciation of the

heterogeneity of vesicles and release sites and how they can

contribute to use-dependent plasticity.
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Introduction
A ubiquitous property of synapses is the ability to keep

track of the history of activity. This history is encoded in

various forms of activity-dependent plasticity that shape

synaptic output and may form the basis of learning and

memory. Short-term plasticity lasts from tens of milli-

seconds to several minutes and is thought to underlie

information processing. It can lead to bidirectional

changes in synaptic strength, which can be reduced for

hundreds of milliseconds to seconds (depression), or it

can be enhanced for hundreds of milliseconds to seconds

(facilitation), to tens of seconds to minutes (augmentation

and post-tetanic potentiation, PTP). Net plasticity at

synapses reflects an interaction between multiple forms

of plasticity. Here we will discuss recent advances in
www.sciencedirect.com
clarifying the mechanisms underlying these different

forms of plasticity.

Synaptic depression
At many synapses, repeated stimuli delivered at short

time intervals lead to a transient decrease in synaptic

strength. Here, we will focus on presynaptic mechanisms

that contribute to a decrease in neurotransmitter release

[1]. Several factors can account for reduced release,

including but not limited to vesicle depletion, inacti-

vation of release sites, and decreased presynaptic calcium

influx (Figure 1a).

Depletion of the readily releasable pool
There are typically hundreds of vesicles associated with

one active zone, but usually fewer than 5% of these

vesicles are readily released with repeated stimulation

[2]. The number of vesicles released by an action poten-

tial depends on the size of this readily releasable pool

(RRP) of vesicles, and on the probability of release of

these vesicles. Because the number of vesicles in the RRP

is limiting, if an action potential releases a large fraction of

the RRP, subsequent stimuli delivered before RRP

replenishment will release fewer vesicles [1]. This model

predicts that depression will increase when the initial

release probability and the frequency of activation are

increased. These predictions hold true for many synapses

such as corticothalamic synapses and synapses in the

auditory brainstem [1,3–5]. Recovery from depression

occurs within several seconds as vesicles from a recycling

pool of vesicles replenish the RRP. Recovery can be

significantly accelerated by elevations of presynaptic

calcium in a calmodulin-dependent manner [6–11].

Inactivation of release sites
According to a second model of synaptic depression,

fusion of a vesicle at a release site can inhibit sub-

sequent fusion events at that site even if the RRP is

not depleted [12�,13]. This proposed site inactivation

lasts for seconds following exocytosis and could reflect

the time it takes to clear vesicular membrane proteins,

which get incorporated into the plasma membrane upon

vesicle fusion, from the release site [12�]. A recent study

suggests a surprising role for endocytosis in limiting the

extent of depression by allowing sites to recover from

such inactivation. Blocking endocytosis presynaptically

reduces the recruitment of readily releasable vesicles

and leads to more pronounced depression during trains

[14��]. These findings are consistent with endocytosis

clearing vesicular membrane proteins from the plasma

membrane where they interfere with release, thereby

allowing sites to recover from inactivation more rapidly
Current Opinion in Neurobiology 2011, 21:269–274
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Figure 1
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Presynaptic mechanisms of use-dependent short-term plasticity.

Schematic diagrams illustrate proposed mechanisms for depression (a),

facilitation (b), and post-tetanic potentiation (PTP) and augmentation (c).

RRP: readily releasable pool of vesicles; Cares: residual calcium.
than if these proteins were removed by diffusion within

the membrane.

Reduction in calcium influx
At many synapses including some neocortical synapses,

axo-axonic synapses of the Mauthner neuron in the gold-

fish, and vestibular afferent synapses, the properties of

depression are inconsistent with RRP depletion [15–17].

Activity-dependent decreases in calcium influx could

account for depression at these synapses. Because

of the steep dependence of neurotransmitter release

on calcium [12�], even small activity-dependent changes

in calcium entry can lead to significant presynaptic

plasticity. At the calyx of Held, a synapse in the auditory

brainstem, calcium-dependent decreases in calcium

influx contribute to synaptic depression [18,19].

Calcium-sensing proteins (CaS), including calmodulin,

calcium binding protein 1 (CaBP1), and neuronal calcium

sensor 1 (NCS-1), interact with calcium channels and

bidirectionally modulate their function [20�]. A recent
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study in cultures of superior cervical ganglion neurons

provides compelling evidence that calcium-dependent

inactivation of calcium channels can contribute to synap-

tic depression: Deleting the calmodulin-binding domain

on P-type calcium channels to prevent their inactivation

reduces synaptic depression [21��]. Among various

synapses, the frequency dependencies of calcium channel

inactivation and vesicle depletion are different [4,20�,22],

and this could explain differences in the relative contri-

butions of each mechanism for specific experimental

conditions [21��].

Molecular determinants of depression and
recovery from depression
Pharmacological or genetic manipulation of many

proteins can influence depression [1,23–25]. This is not

surprising considering that the initial probability of

release, presynaptic calcium signaling, endocytosis, the

size of vesicle pools, and replenishment of these pools can

all influence depression and recovery from depression

[4,13,26,27]. Consequently it is often difficult to interpret

a change in the extent of depression. This is illustrated by

considering the dramatic alleviation of depression when

RIM proteins are eliminated [28]. This reduction in

depression arises from a decrease in the probability of

release [28,29], which is set by RIM via its functions in

priming vesicles for release and localizing calcium chan-

nels to the active zone [30–32]. Some synapses have

molecular specializations that limit the extent of depres-

sion. For example, at the cerebellar mossy fiber-to-gran-

ule cell synapse genetic deletion of Bassoon, a protein of

the active zone, results in more pronounced synaptic

depression. Additional results suggest that Bassoon

reduces synaptic depression by aiding vesicle replenish-

ment at release sites [33�].

Facilitation
For most synapses with a low initial probability of release,

repeated stimulation at short time intervals leads to a

transient increase in transmitter release probability [34].

This short-lived synaptic facilitation depends on presyn-

aptic calcium. Several mechanisms have been proposed to

account for facilitation (Figure 1b).

Residual calcium
One proposed mechanism for facilitation involves

residual calcium (Cares) that persists in the presynaptic

terminal following synaptic activation [1]. At the calyx of

Held, linear summation of Cares (hundreds of nanomolar)

with the high local calcium levels at a release site evoked

by an action potential (Calocal of tens to hundreds of

micromolar) will not lead to sufficient enhancement of

synaptic transmission [35]. It has therefore been hypoth-

esized that Cares increases the probability of release by

binding to a sensor distinct from synaptotagmin, the

sensor for synchronous release, and activating a site dis-

tinct from the low affinity sites on synaptotagmin that are
www.sciencedirect.com
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responsible for vesicle fusion [36,37]. At present no such

calcium sensor has been identified.

Saturation of endogenous calcium buffers
Another potential mechanism for facilitation involves

calcium-binding proteins within presynaptic terminals

that normally intercept calcium ions between calcium

channels and release sites, thus reducing the initial prob-

ability of release [38,39]. If the first stimulus leads to

calcium occupying some of these calcium-binding

proteins, then more calcium will reach the release site

in response to the second stimulus, and the probability of

release will be elevated. This mechanism of facilitation

has been demonstrated at some neocortical synapses that

contain a high concentration of the calcium binding

protein calbindin D-28k [40].

Facilitation of calcium currents
An increase in presynaptic calcium influx could increase

the probability of release and contribute to facilitation. It

has been known for some time that calcium currents can

be enhanced in a use-dependent manner [41,42]. More-

over, calcium-sensitive proteins such as calmodulin have

previously been implicated in use-dependent increases in

presynaptic calcium entry [20�]. A crucial link among

these two sets of observations and facilitation was made

when it was found that mutating P-type calcium channels

to prevent calcium-dependent facilitation of calcium

currents also suppressed synaptic facilitation [21��].

Augmentation and post-tetanic potentiation
Augmentation and PTP are two closely related forms of

enhancement that are observed following sustained, high-

frequency synaptic activation [1]. PTP lasts for tens of

seconds to minutes, and becomes longer lasting when the

stimulus frequency and duration are increased. Augmen-

tation is induced with less prolonged stimulation and lasts

for 5–10 s. Different synapses exhibit considerable differ-

ences in the frequency and number of stimuli needed to

induce augmentation and PTP, and the distinction be-

tween the two phenomena is not always clear [1].

Numerous mechanisms have been implicated in PTP

(Figure 1c). PTP is accompanied by a decrease in

paired-pulse plasticity, suggesting an increase in the

probability of release. This increase may result from

either an increase in presynaptic calcium entry or changes

in the release machinery itself. At the calyx of Held

synapse, tetanus-induced increases in action potential-

evoked calcium entry could contribute to PTP [43,44],

but at superior cervical ganglion cell synapses calcium-

induced enhancement of calcium channels does not con-

tribute significantly to PTP even though it accounts for

approximately half of augmentation [21��]. The prob-

ability of release can also be altered independently of

changes in presynaptic calcium entry. For example,

protein kinase C (PKC), which has been implicated in
www.sciencedirect.com
PTP [44–46], can decrease the calcium cooperativity such

that the same calcium signal can evoke the release of

more synaptic vesicles [47�]. Tetanus-induced alterations

in the properties of the RRP can also contribute to PTP.

At the calyx of Held synapse, it is thought that activation

of myosin light chain kinase (MLCK) can produce altera-

tions in the RRP that can account for about 20% of PTP

[48]. Tetanic stimulation can also increase the size of

miniature synaptic currents that can contribute to PTP

[1]. At the calyx of Held synapse, tetanic stimulation can

cause some of the vesicles to fuse with each other before

fusion with the plasma membrane, and thereby increase

the size of miniature synaptic currents [49��].

Calcium signals within the presynaptic bouton play a

central role in all of the proposed mechanisms mediating

PTP. At the calyceal synapse, tetanic stimulation elevates

Cares to several hundred nanomolar, and this Cares decays

with a time course similar to PTP [44,50], suggesting that

the time course of Cares may dictate the time course of

PTP. At the hippocampal synapses, Cares decays more

rapidly than PTP [45,51], suggesting that Cares activates

biochemical cascades with slower kinetics that regulate

the duration of PTP. In addition to PKC, possible targets

of Cares include Munc13 [52], calmodulin/CaM kinase II

[53] and its downstream effector protein synapsin [24],

and the calcium-activated protease calpain [54]. Pharma-

cological studies support a role for PKC [44,45,55,56], but

these studies have been called into question [48] and

molecular genetic evidence is unavailable, in part because

there are many PKC isoforms [57]. Munc13 proteins,

which are required for synaptic transmission, are essential

for vesicle priming and can regulate short-term synaptic

plasticity [58�,59]. There is still considerable uncertainty

about the relative contributions of PKC, Munc13, and

other calcium-sensitive proteins to PTP, and it has even

been suggested that related forms of synaptic enhance-

ment require both Munc13 and PKC, as well as its

downstream target Munc18 [47�,60].

Studies of the contribution of vesicle pool size to PTP at

the calyx of Held synapse highlight some of the chal-

lenges in interpreting data and drawing mechanistic con-

clusions. Tetanic stimulation can increase the size of the

vesicle pool that is released by a high-frequency train

(RRPtrain, Figure 2a) [48], but paradoxically there is little

change in the overall size of the RRP determined by large

prolonged presynaptic voltage steps [61�] (Figure 2b).

Similarly, PKC activators can produce large increases in

RRPtrain whereas they only produce small increases in the

RRP assayed by voltage steps [47�]. The differences in

the RRPtrain and RRP can be explained by non-uniform-

ity in the vesicles that make up the RRP [62,63]. Vesicles

that are readily released by action potentials are thought

to be near voltage-gated calcium channels, whereas it is

difficult for action potentials to liberate vesicles that are

far from voltage-gated calcium channels [12�]. In contrast,
Current Opinion in Neurobiology 2011, 21:269–274



272 Synaptic function and regulation

Figure 2
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Two common approaches of assessing vesicle pools relevant to

understanding the mechanisms of short-term plasticity. One approach

to assessing the properties of vesicles is to stimulate synapses at high

frequencies under conditions where desensitization and saturation of

postsynaptic receptors are blocked (a, top). (a, bottom) The amplitudes

of the synaptic currents evoked by each stimulus are then measured,

and a graph is made of the cumulative excitatory postsynaptic current

(EPSC). When these values are divided by the amplitude of miniature

EPSCs (mEPSCs) they represent the cumulative number of vesicles. The

readily releasable pool liberated by the stimulus train (RRPtrain) is then

determined by fitting over a linear region of this curve and extrapolating

back to zero. (b) Another approach is to provide a prolonged voltage

step that opens presynaptic calcium channels for a long time. The

resulting postsynaptic currents then provide a measure of the readily

releasable pool (again using the mEPSC size to convert from current to

number of vesicles). The total number of vesicles liberated is the readily

releasable pool (RRP), which consists of a fast component (RRPfast) and

a slow component (RRPslow). As discussed in the text, synaptic plasticity

can affect RRPtrain without influencing RRP. Understanding RRPtrain,

RRPfast, RRPslow, and RRP has important implications for determining

the mechanisms underlying short-term plasticity.
vesicles both near and far from voltage-gated calcium

channels contribute to the RRP that is determined

using protocols that lead to large and prolonged calcium

increases [62,64]. Such non-uniformity in vesicles
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complicates the interpretation of short-term plasticity.

For example, an increase in the calcium sensitivity of

vesicles might increase RRPtrain by making some distant

vesicles responsive to action potentials.

Conclusions
In the past decade significant advances have been made in

clarifying the mechanisms responsible for short-term

plasticity. Depletion of readily releasable vesicles, inacti-

vation of release sites, and inactivation of presynaptic

calcium channels can all contribute to synaptic depression.

Local saturation of calcium buffers, facilitation of presyn-

aptic calcium channels, and Cares-dependent processes can

lead to synaptic facilitation. Increased quantal size, Cares-

dependent increases in the probability of release, facili-

tation of calcium channels, and alterations in vesicles have

all been implicated in PTP. But there are many unresolved

questions. Why do some release sites inactivate whereas

other do not? Although much is known about the molecular

mechanism of calcium channel regulation, much less is

known about other mechanisms. Are there specialized

calcium sensors that can respond to Cares to produce

facilitation, and if so what are they and how do they work?

What are the molecular mechanisms that allow Cares to

produce PTP? How does the heterogeneity of vesicles and

release sites influence short-term plasticity? Our current

view of synaptic transmission and short-term plasticity is

based to a large extent on the calyx of Held, but to what

extent can the properties of this synapse be generalized to

others? Thus, despite recent progress in the field, many

questions remain to be addressed.
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